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Abstract

There is limited information in the literature related to the lower back loading in patients with 

LBP, particularly those with non-chronic LBP. Toward addressing such a research gap, a case-

control study was conducted to explore the differences in lower back mechanical loads between a 

group of females (n=19) with non-chronic, non-specific LBP and a group of asymptomatic 

females (n=19). The differences in lower back mechanical loads were determined when 

participants completed one symmetric lowering and lifting of a 4.5 kg load at their preferred 

cadence. The axial, shearing, and moment components of task demand at the time of peak moment 

component as well as measures of peak trunk kinematics were analyzed. Patient vs. asymptomatic 

group performed the task with smaller peak thoracic rotation and peak lumbar flexion. While no 

differences in the moment component of task demand on the lower back between the patients and 

controls were found, the shearing (40–50 age group) and axial components of task demand were, 

respectively, larger and smaller in patients vs. controls. Whether alterations in lower back loads in 

patients with non-chronic LBP are in response to pain or preceded the pain, the long-term 

exposure to abnormal lower back mechanics may adversely affect spinal structure and increase the 

likelihood of further injury or pain. Therefore, the underlying reason(s) as well as the potential 

consequence(s) of such altered lower back mechanics in patients with non-chronic LBP should to 

be further investigated.
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Introduction

Low back pain (LBP) is a leading cause of disability with substantial direct and indirect cost 

(Balagué et al., 2012; Driscoll et al., 2014; Hoy et al., 2010; Maher et al., 2017). Complexity 

and multidimensional nature of LBP’s risk factors pose a significant challenge for risk 

management strategies aimed at minimizing the level of exposure. Knowledge of the 

underlying mechanism(s) responsible for the development and/or persistence of LBP may 

open new avenues for managing this problem, via interventions that specifically target the 

underlying malfunctioning mechanism(s) rather than simply reducing generic risk factor 

exposures. Mechanical loads, specifically forces and deformations, in the lower back tissues 

can instantaneously or cumulatively exceed the tissues’ injury/pain threshold and directly or 

indirectly lead to LBP (Adams, 2004; Adams et al., 2013; Coenen et al., 2014; Van Dieën et 

al., 1999). Therefore, a further understanding of this construct in patients with LBP could 

provide important insights into this health condition.

Mechanical loads experienced in the lower back tissues are directly related to mechanical 

equilibrium and stability of the lumbar spine (Arjmand et al., 2009; Kingma et al., 2007). 

Spine equilibrium requires that forces in the lower back tissues, at a minimum level, to 

balance the mechanical demand of the task (i.e., due to body weight, external loads, and 

inertia forces). Forces in the lower back tissues maybe larger than the minimum required 

force for equilibrium in response to stability requirement of spine (i.e., the capacity to 

maintain mechanical equilibrium at presence of perturbation). Therefore, spinal loads are the 

resultant of two sets of forces that balance each other around the spine: 1) body weight, 

external loads, and inertia forces (i.e., collectively known as the mechanical demands of the 

task on the lower back) and 2) the active muscle forces as well as the passive forces in the 

connective tissues attached to the spine (i.e., collectively known as the internal tissue 

responses) (Adams et al., 2013; Bazrgari et al., 2008b; Bazrgari et al., 2009a; Bazrgari et al., 

2009b; Reeves and Cholewicki, 2003). Potential injury mechanisms in the lower back due to 

mechanical loading have been shown in cadaveric studies (Adams, 2004; Adams et al., 

2013). Lower back tissues can be injured due to excessive loads in the lumbar spine 

including compression force (e.g., vertebral body damage followed by internal disc 

disruption), bending moment in the sagittal plane (e.g., posterior ligaments and annulus 

damage), axial twist and shearing force (e.g., facet joints damage), and combined bending 

moment and compression force (e.g., annulus and nucleus damage) (Adams, 2004; Adams et 

al., 2013; Harris and Macnab, 1954; Osti et al., 1990; Roaf, 1960; Van Dieën et al., 1999).

The potential causal mechanism for LBP via excessive mechanical load in lower back 

tissues (Adams, 2004; Adams et al., 2013; Coenen et al., 2014; Van Dieën et al., 1999) has 

motivated many research to investigate whether exposure to certain physical factors 

increases mechanical loads in the lower back. For instance, muscle forces and spinal loads 

under dynamic lifting tasks (Fathallah et al., 1998; Granata et al., 1997), whole body 
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vibrations (Bazrgari et al., 2008a; Kitazaki and Griffin, 1997; Kong and Goel, 2003), sudden 

forward perturbations (Bazrgari et al., 2009a; Shahvarpour et al., 2015), and sudden release 

loading (Bazrgari et al., 2009b) have been estimated for asymptomatic individuals. Though 

the level and the type of association between exposure to physical factors and occurrence of 

LBP has been a source of disagreement in the literature (Adams et al., 2013; Maher et al., 

2017; Roffey et al., 2010; Waddell and Burton, 2001; Wai et al., 2010), collectively these 

studies suggest increase in mechanical loads under exposure to physical factors. Similarly, 

investigation of spinal loads in patients with LBP may help verifying whether treatments 

offered for LBP should also improve the lower back biomechanics.

The published research on spinal loads in patients with LBP has mainly focused on persons 

with chronic condition. For lifting and lowering tasks from the floor to the hip level, 

Lariviere et al. (Larivière et al., 2002) did not find any difference in peak moment demand 

and compression forces on the spine in patients with chronic LBP vs. controls. They used 

link-segment models to estimate mechanical demands of the task on the lower back and 

polynomial equations to estimate spinal loads (Larivière et al., 2002). Using a two-

dimensional link-segment model and a single equivalent extensor muscle, Norman et al. 

(Norman et al., 1998) reported larger peak and mean moments as well as larger compression 

and shearing forces on the spine of workers with chronic LBP vs. controls during regular 

work duties on the work site. Marras et al. (Marras et al., 2001) reported larger peak moment 

and compression as well as larger mean compression and shearing forces on the spine of 

patients with chronic LBP vs. asymptomatic controls using an EMG-assisted model during 

lifting tasks in the sagittal plane. Shahvarpour et al. (Shahvarpour et al., 2016) reported 

similar muscle forces and spinal loads for patients with chronic LBP and asymptomatic 

controls using a detailed finite element model of spine during unstable sitting on a wobble 

chair. Notwithstanding the impact of experimental setup and modeling assumptions on 

findings of earlier studies, it is plausible to postulate differences in lower back loading 

between patients with chronic LBP and asymptomatic individuals; differences that are task 

dependent. To our best knowledge, there are only two studies of lower back loading in 

patients with non-chronic LBP. Using a link-segment model, Shum et al. (2007 and 2010) 

calculated the lower back moment during trunk forward bending and backward return as 

well as sit-to-stand and stand-to-sit tasks. The lower back moment was smaller in patients at 

the end range of trunk forward bending but was larger at smaller bending angles (i.e., 15, 30, 

and 45 degrees). For sit-to-stand and stand-to-sit activity, the lower back moment was 

smaller in the main plane of movement (the sagittal plane) but larger in frontal and 

transverse planes among patients with non-chronic LBP compared to asymptomatic controls. 

Similar to studies of patients with chronic LBP, differences in lower back loads between 

patients with non-chronic LBP and asymptomatic individuals appears to be task dependent. 

The limited number of studies on lower back loading in patient with LBP, particularly those 

with non-chronic LBP, along with task dependency of change in lower back loading call for 

further investigation of this important construct in patients with LBP.

The objective of this study was set to investigate differences in mechanical demands of a 

task involving lowering and lifting a load in the sagittal plane on the lower back between a 

group of females with non-chronic LBP and a control group of asymptomatic females. 

Given that for the same two groups of participants, we have observed similar trunk range of 
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rotation but smaller trunk angular acceleration in the patient vs. control group during free 

trunk forward bending and backward return (Shojaei et al., 2017), we hypothesized that the 

moment demand on the lower back would be smaller for patients vs. controls. However, 

since patients adopted a larger pelvic rotation during the free trunk bending and return 

(Shojaei et al., 2017), we further hypothesized that the shearing and axial components of the 

task demand will, respectively, be larger and smaller in patients with non-chronic LBP 

versus controls (Shojaei et al., 2016c).

Methods

Participants

Nineteen females (aged 40–70 years) with health-care provider diagnosed non-specific LBP 

were included in this case-control study design to complete a set of experimental procedures 

that had already been used in a baseline study involving asymptomatic individuals between 

20 and 70 years old (Shojaei et al., 2016a; Shojaei et al., 2016b; Vazirian et al., 2016b). 

Patients were excluded if their LBP had lasted more than 3 months as well as if they had 

significant cognitive impairment, intention to harm themselves or others, evidence of 

substance abuse, or did not have access to a telephone (Borson et al., 2000; Brown and 

Rounds, 1995; Ewing, 1984; Radloff, 1977). Upon completion of data collection from the 

patient group, the data from female participants in the baseline study who were within the 

same age range (i.e., 40–70 years old) of the patients in this study were extracted for 

comparison. Asymptomatic controls were recruited via advertisement and excluded if they 

had a recent (i.e., during the past year) history of LBP or musculoskeletal disorders (Shojaei 

et al., 2016a; Vazirian et al., 2016a; Vazirian et al., 2016b). Independent-samples t-tests 

indicated no differences in age, stature, body mass, or body mass index (BMI) between the 

two groups (Table 1). Prior to data collection, all participants completed an informed 

consent procedure approved by the Medical University of Kentucky Institutional Review 

Board.

Experimental Procedures

Straps were used to attach wireless Inertial Measurement Units (IMUs; Xsens Technologies, 

Enschede, Netherlands) superficial to the T10 vertebral process, sacrum (S1), right thigh 

(superior to lateral femoral epicondyle), and right shank (superior to lateral malleolus) 

(Shojaei et al., 2016c)1. IMUs placed at the T10 and the S1 levels were assumed to measure 

rotations of the thorax and pelvis as rigid bodies, while the difference between these 

rotations was considered to represent lumbar flexion/extension (Shojaei et al., 2016c) (Fig 

1). During the data collection, participants were instructed to complete one symmetric 

lowering and lifting task while standing in the center of a force platform (AMTI, Watertown, 

MA). Participants were asked to lower a 4.5 kg load from an upright posture to their knee 

height, pause for 5 seconds at this flexed posture, and then extend back to the initial upright 

standing posture. No more instruction was provided and the task was performed at the 

participants preferred cadence. The participants completed the task without practice, but if 

1IMUs were attached by student researchers. The first author of this manuscript was present in data collection of all participants and 
particularly assured the consistency of sensors locations between patients and controls.
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the proper way of performing the task was violated (for example, target height was not 

achieved) the task was repeated. The kinematics data tracked by IMUs and ground reaction 

forces collected from the force platform were sampled at the respective rates of 50 and 1000 

Hz. Raw kinematics and kinetics data were low-pass filtered (cutoff frequencies of 6Hz and 

50Hz, respectively) using a fourth order, bidirectional, Butterworth filter.

Data Analysis

A previously developed linked-segment model of the lower extremities and pelvis was used 

to estimate the net reaction forces and moments at the lower back (Shojaei et al., 2016c). 

Briefly, the model, developed in MATLAB (The MathWork Inc., Natick, MA, USA, version 

8.6), included rigid bodies of seven segments (bilateral feet, shanks, and thighs as well as the 

pelvis) that were connected using frictionless point-contact joints (Fig. 1).

Using existing regression equations (Winter, 2009), anthropometric and inertial properties of 

each segment were estimated from participant characteristics (i.e., height and mass). 

Rotation matrices were then extracted from IMUs to calculate angular rotation of segments, 

whereas angular velocity and acceleration were obtained using a successive numerical 

differentiation procedure (Fig. 2).

The mean (SD) accuracy of IMUs (i.e., rotation measure), when used to measure a known 

rotation in our lab, was found to be .55 (.32) deg and their reliability of repeated 

measurements (between-day) quantified using intra-class correlation coefficients was 

excellent (e.g., 1.000). Linear velocity and acceleration were found using the relationship 

between linear and angular velocity under the assumption that the position of ankle joint did 

not change throughout the entire task (Shojaei et al., 2016c). Considering the symmetrical 

nature of the task, equivalent kinematics were assumed for right and left lower extremity 

limbs. A “bottom-up” inverse dynamics approach (stepwise estimates at the ankle proceeded 

by knee and hip joints) was used to estimate reaction forces and moments at the lower back 

which was considered to be the superior level of the pelvis (Freivalds et al., 1984; Song and 

Qu, 2014) (Fig. 1). Projections of the lower back reaction forces perpendicular (axial) and 

parallel (shearing) to the L5-S1 intervertebral discs were calculated to represent the 

contribution of task demand to total axial and shearing forces (i.e., task demand plus the 

response from internal tissues). The standing orientation of the L5-S1 intervertebral disc, 

with respect to the gravity direction, was considered to be 50 degrees for 40–50 and 50–60 

age groups and 54 degrees for the 60–70 age group (Schwab et al., 2006) for both patient 

and control groups. The axial and shearing demand as well as the moment demand on the 

lower back throughout the entire task are shown in Fig. 3 for a typical subject. Estimated 

forces and moments were normalized to individual body mass and body mass*stature, 

respectively. To be able to present the kinetics measures in a more clinically-meaningful 

sense, the normalized values were multiplied by the mean body mass and mean body 

mass*stature across participants (multiplying the measures by a constant value will not 

affect the results of statistical analyses).
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Statistical Analysis

The dependent measures included the axial, shearing, and the moment components of task 

demand as well as several measures of trunk kinematics. Specifically for each phase of task, 

the values of components of task demand at the time of peak moment component (TPMC) as 

well as the peak pelvic and thoracic rotations along with the corresponding values of lumbar 

flexion were used for statistical analyses. Mixed-model analysis of variance (ANOVA) tests 

were conducted on the task demand variables with group (with and without LBP) and age 

(40–50, 50–60, and 60–70) as the between-subjects factors and task phase (lowering and 

lifting) as the within-subjects factor. Furthermore, univariate ANOVA tests were used to 

determine effects of group and age and their interaction on the kinematics variables. Mixed-

model and univariate ANOVA assumptions were verified, and significant ANOVA tests were 

followed by post hoc tests using Tukey’s procedure. All statistical analyses were performed 

using SPSS (IBM SMSS Statistics 23, Armonk, NY, USA), and summary values are 

reported as means (SD). A p value ≤ 0.05 was considered as statistically significant for all 

measurements.

Results

Interaction Effects

There was a significant interaction effect of group by age on the shearing component of task 

demand (Table 2). Specifically, for individuals in 40–50 age group the shearing component 

was larger (F=7.85, p=0.026) in patients (457.9 N ± 23.0 N) vs. controls (384.2 N ± 31.6 N).

Main Effects

Group—There were no differences in the moment component of task demand between 

patients with non-chronic LBP and asymptomatic controls, whereas the axial component at 

TPMC was smaller in patients vs. controls (Table 2 and Table 3). Moreover, the patient 

group adopted a smaller peak thoracic rotation as well as a smaller peak lumbar flexion 

(Table 2 and Table 3).

Age—There were no age-related differences in any of the kinetics and kinematics outcome 

measures (Table 2 and Table 3).

Task phase—Larger moment and smaller axial components of task demand at TPMC 

were observed during lowering vs. lifting phase of the task (Table 2 and Table 3).

Discussion

The purpose of this study was to investigate differences in the mechanical demands of a 

lowering and lifting task in the sagittal plane on the lower back between a group of females 

with non-chronic LBP and a group of asymptomatic females. We did not find any 

differences in the peak moment component of task demand between the patients and 

controls, however, the shearing (40–50 age group) and axial components of task demand at 

TPMC were, respectively, larger and smaller in patients vs. controls. These between group 
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differences rejected our hypothesis on moment demand of task, but confirmed our 

hypothesis on the shearing and the axial components of task demand.

While several studies have investigated the differences in the mechanical demand of physical 

tasks on the lower back between patients with chronic LBP and controls, only a few studies 

investigated such differences between patients with non-chronic LBP and controls (Danneels 

et al., 2002; Shum et al., 2007, 2010). For a trunk forward bending and backward return 

task, Shum et al. (2010) reported larger moment demand at smaller flexion angle and smaller 

moment demand at the end range of forward bending between patients with non-chronic 

LBP and controls. Instead of point-by-point comparison, we compared peak moment 

demand between the groups which happened to occur at ~ 85% of trunk end range of flexion 

in both groups. Considering that the transition from larger to smaller differences in the 

reported differences in moment demand between patients and controls by Shum et al. (2010) 

occurred somewhere between the mid and the end range of trunk flexion, our results seem to 

be consistent with their findings. Danneels et al. (2002) reported similar electromyography 

(EMG) activity of the multifidus and iliocostalis lumborum pars thoracis in patients with 

non-chronic LBP and controls during coordination and strength exercises (Danneels et al., 

2002). Our finding of similar moment mechanical demands on the lower back, though an 

indication of comparable total internal tissue responses to the task demand in both groups, 

doesn’t suggest comparable active muscle response. Specifically, the observed smaller 

lumbar flexion in patients (Table 2 to Table 4) suggests a smaller passive contribution of 

lower back tissues in offsetting the moment demand of task (Shojaei et al., 2016a), hence an 

indication of larger active muscle contribution. Participants were instructed to bend forward 

with a straightened back (i.e., controlled contribution of passive tissues in offsetting the task 

demand) in Danneels et al. (2002); an instruction that could be the reason for differences 

between our findings and those of Danneels et al. (2002). It is also notable that unlike the 

findings on similar EMG activity of the muscles in patients with non-chronic LBP vs. 

controls (Danneels et al., 2002), Danneels et al. (2002) reported lower EMG activity of the 

muscles in patient with chronic LBP vs. control.

Our hypothesis on smaller moment demand of task in patients was driven by our findings in 

an earlier study wherein we observed similar peak thorax rotation but smaller peak angular 

acceleration during free trunk forward bending and backward return in patients vs. controls 

(Shojaei et al., 2017). Smaller peak thorax rotation also was observed in patients in this 

study, hence further supporting our hypothesis on moment demand. However, we did not 

find any differences in the moment demand between the groups. The reason for such lack of 

difference was that the thoracic rotation as well as the thorax angular acceleration at TPMC 

were comparable between patients and controls (Table 4).

Furthermore, our hypothesis on larger shearing and smaller axial components of the task 

demand in patients with non-chronic LBP versus controls was based on our earlier 

observation of larger pelvic rotation in patients vs. controls during free trunk forward 

bending and return. In contrast to free motion, peak pelvic rotation was found to be 

comparable between the groups (Tables 2 and 3) in this study. Nevertheless, our hypothesis 

was approved as pelvic rotation at TPMC, where the statistical analyses for the task 

demands were performed, was larger in patients (Table 4). Additionally, the difference in 
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pelvic rotation between patients and controls was larger (not statistically though) in 40–50 

years old age group compared to the other two age groups (i.e., 14.5, 9.2, and 8 degrees in 

respectively 40–50, 50–60, and 60–70 age groups). Such an age by group difference in 

pelvic rotation may had a role in the observed differences in shearing demand of the task 

only in the 40–50 years old age group.

As compared to controls, patients significantly changed their lumbo-pelvic kinematics from 

the free-style trunk motion to the lowering and lifting task considered in this study. 

Specifically, patients vs. control adopted a much smaller thorax range of rotation in the 

lowering and lifting task (i.e., 75.2 vs. 85.4) than in free-style forward bending (104.6 vs. 

99.1). Such a reduction in the peak thoracic rotation in patients was achieved by a reduction 

in the lumbar contribution to the thoracic rotation from 43° to 32.6° (~ 24% reduction), 

while the reduction in the lumbar contribution to the thoracic rotation in the control group 

was from 55.7° to 51.4° (~ 8% reduction). The significant reduction of the lumbar 

contribution under the lowering and lifting task may be an overprotective neuromuscular 

strategy in patients, for instance, to avoid likely overstretching of pain sensitive tissues in the 

posterior elements of the ligamentous spine.

We found larger moment demand on the lower back under lowering (91.8 Nm) vs. lifting 

(87.3 Nm) phase of the task that is consistent with the reports on higher occurrence of 

musculoskeletal injuries (i.e., 67%) during lowering tasks (Lamonde, 1987). However, the 

literature on differences in mechanical loads on the lower back under lowering vs. lifting 

tasks is not consistent; there are reports of smaller (De Looze et al., 1993; Larivière et al., 

2002), similar (Gagnon and Gagnon, 1992), and larger (Davis et al., 1998) mechanical loads 

on the lower back under lowering vs. lifting tasks. Such inconsistency in the reported 

mechanical loads can be due to the differences in task characteristics (e.g., the weight of 

load carried, lift origin and destination) and the lifting technique (e.g., a standardized lifting 

technique or motion pace vs. a free-style technique).

Our findings contribute to the current understanding of mechanical demands of a sagittally 

symmetric lowering and lifting task on the lower back in patients with non-chronic, non-

specific LBP, however, there are study limitations. We only recruited female patients, 

therefore, generalizability of the study findings is limited. We did not asked the participants 

about their level of pain when performing the tasks, therefore, it remains unclear if and how 

the observed changes in trunk kinematics and the resultant kinetics were affected by their 

perception of pain during the experiment. Due to lack of reports on incidence and alignment 

of pelvis in patients with non-chronic LBP and also inconclusive results from the literature 

(Hanson et al., 2002; Jackson et al., 2000; Jackson et al., 2003; Legaye et al., 1998; Marty et 

al., 2002) for patients with chronic LBP, same values of sacral orientation were used for both 

patients and controls when calculating axial and shearing projections of lower back reaction 

forces. While mechanical demand of physical tasks on the lower back constitutes a small 

portion of spinal load (i.e., ~ 20%), it directly influences internal muscle responses that 

constitute the major portion of spinal loads. Studying muscle response and the resultant 

spinal loads, however, requires detailed model-based studies (Arjmand et al., 2009; Bazrgari 

et al., 2008a) as well as electromyography-based measures of the trunk muscles (Callaghan 

and McGill, 2001).
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In summary, we found patients with non-chronic LBP vs. controls adopt distinct trunk 

kinematics involving less lumbar flexion to perform lifting and lowering task, leading to our 

observation of differences in the shearing and axial demands of the task on the lower back 

between the two groups. Although such kinetics differences might have been driven by a 

neuromuscular effort to minimize lumbar flexion in patients, it directly affects equilibrium 

and stability of the spine, and hence, the load experienced in the lower back tissues. 

Regardless of the underlying source of such kinetics differences in patients with LBP, their 

impact on spine equilibrium and stability and lower back loading should be further 

investigated. Given the continuity of the spinal column, alterations in mechanical 

contributions to task demand in one area/component should be compensated by another area/

component. The likelihood of further injury and/or structural changes in the lower back 

tissues that can lead to persistence of LBP increases if the tissue(s) offering compensatory 

mechanical contributions are not evolved for such response. Furthering knowledge of these 

biomechanical differences can positively impact the efficiency of present management 

paradigm for LBP and can help better match patient pathology with target treatments with 

the long-term goal of avoiding LBP recurrence and/or progression from a non-chronic to a 

chronic stage.
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Figure 1. 
Lateral view of the linked-segment model. Pelvic (P) and thoracic (T) rotations are shown in 

the figure and Fx, Fy and Mz denote ground reaction forces. Segments with solid lines were 

included in the “bottom-up” inverse dynamics approach. AL5-S1 (axial), SL5-S1 (shearing), 

and ML5-S1 (moment) represent the mechanical demands of task on the lower back.
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Figure 2. 
A typical example of pelvic and thoracic rotations as well as lumbar flexion (top) during the 

lowering and lifting task. Thorax angular velocity (middle) and acceleration (bottom) were 

obtained using a successive numerical differentiation procedure.
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Figure 3. 
A typical example of axial and shearing demand (left) and the moment demand (right) on 

the lower back throughout the entire lowering and lifting task.
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Table 1

Mean (SD) participant characteristics

Patients Controls t-value p-values

Age (years) 58 (9) 56 (9) 0.723 0.474

Stature (cm) 163 (7) 164 (5) −0.592 0.557

Body mass (kg) 76 (17) 70 (12) 1.553 0.13

BMI 27.5 (4.6) 25.7 (4.1) 1.608 0.117

Level of pain* 3.84 (2.09) -- -- --

Level of disability* 6.16 (4.54) -- -- --

*
The level of pain is based on the pain intensity construct of Wisconsin Brief Pain Inventory (Daut et al., 1983) and the disability is based on 

Roland Morris Disability Scale (Stroud et al., 2004).
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